Abstract

Abstract In this paper, charging kinetics of polydisperse aerosol particles in a corona field of a coaxial electrode system is numerically analyzed for a logarithmic normal distribution of aerosol particle size. The particle charging and the particle current are calculated by using a charging model considering ion concentration and particle mobility. Particle charging profiles under varying ion density and electrical field intensity distributions of the charging chamber were revealed. A low charging profile in the transition region of bipolar corona field was demonstrated in the simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call