Abstract
The main purpose of this article is to describe a numerical scheme for solving two-dimensional linear Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on radial basis functions (RBFs) constructed on a set of disordered data. The proposed method does not require any background mesh or cell structures, so it is meshless and consequently independent of the geometry of domain. This approach reduces the solution of the two-dimensional integral equation to the solution of a linear system of algebraic equations. The error analysis of the method is provided. The proposed scheme is also extended to linear mixed Volterra–Fredholm integral equations. Finally, some numerical examples are presented to illustrate the efficiency and accuracy of the new technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.