Abstract

In this article, we use a multilevel quartic spline quasi-interpolation scheme to solve the one-dimensional nonlinear Korteweg–de Vries (KdV) equation which exhibits a large number of physical phenomena. The presented scheme is obtained by using the second-order central divided difference of the spatial derivative to approximate the third-order spatial derivative, and the forward divided difference to approximate the temporal derivative, where the spatial derivative is approximated by the proposed quasi-interpolation operator. Compared to other numerical methods, the main advantages of our scheme are the higher accuracy and lower computational complexity. Meanwhile, the algorithm is very simple and easy to implement. Numerical experiments in this article also show that our scheme is feasible and valid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.