Abstract

A contour integral method is proposed to solve nonlinear eigenvalue problems numerically. The target equation is $F(\lambda)\bm{x}=0$, where the matrix $F(\lambda)$ is an analytic matrix function of $\lambda$. The method can extract only the eigenvalues $\lambda$ in a domain defined by the integral path, by reducing the original problem to a linear eigenvalue problem that has identical eigenvalues in the domain. Theoretical aspects of the method are discussed, and we illustrate how to apply of the method with some numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.