Abstract
The Bhatnagar-Gross-Krook (BGK) model, a simplification of the Boltzmann equation, in the absence of boundary effect, converges to the Euler equations when the Knudsen number is small. In practice, however, Knudsen layers emerge at the physical boundary, or at the interfaces between the two regimes. We model the Knudsen layer using a half-space kinetic equation, and apply a half-space numerical solver [19,20] to quantify the transition between the kinetic to the fluid regime. A full domain numerical solver is developed with a domain-decomposition approach, where we apply the Euler solver and kinetic solver on the appropriate subdomains and connect them via the half-space solver. In the nonlinear case, linearization is performed upon local Maxwellian. Despite the lack of analytical support, the numerical evidence nevertheless demonstrate that the linearization approach is promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.