Abstract

A numerical method based on an N+1-fluid model is proposed for the prediction of a three-dimensional unsteady turbulent bubbly flow with nonuniform bubble sizes. Among the N+1 fluids, one fluid corresponds to the liquid phase and the N fluids to bubbles. The model can therefore take account of N different bubble sizes. Since the fluid density of each bubble group can differ from that of other groups, the method is also applicable to multi-component flows such as a gas-liquid-solid flow and a liquid-solid flow with various particles. The increase in the number of fluids to be solved does not require any lengthy complicated programming because the calculation of N field equations for the gas phase is easily conducted using a single DO-loop. To demonstrate the potential of the proposed method, unsteady bubble plumes in a water-filled vessel were simulated using the N+1-fluid and two-fluid models. As a result, it was confirmed that the N+1-fluid model gave better predictions than the two-fluid model for bubble plumes with nonuniform bubble sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.