Abstract

Granular materials are widespread in nature and human production, and their macro-mechanical behavior is significantly affected by granule movement. The development of computer vision has brought some new ideas for measuring the numerical information (including the amount of translation, the rotation angle, velocity, acceleration, etc.) of dynamic granular materials. In this paper, we propose a numerical measurement method for dynamic granular materials based on computer vision. Firstly, an improved video instance segmentation (VIS) network is introduced to perform end-to-end multi-task learning, and its temporal feature fusion module and tracking head with long-sequence external memory can improve the problems of poor video data quality and high similarity in appearance of granular materials, respectively. Secondly, the numerical information can be extracted through a series of post-processing steps. Finally, the effectiveness of the measurement method is verified by comparing the numerical measurement results with the real values. The experimental results indicate that our improved VIS obtains an average precision (AP) of 76.6, the relative errors and standard deviations are maintained at a low level, and this method can effectively be used to measure the numerical information of dynamic granular materials. This study provides an intelligent proposal for the task of measuring numerical information of dynamic granular materials, which is of great significance for studying the spatial distribution, motion mode and macro-mechanical behavior of granular materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.