Abstract

Abstract Gamma-ray bursts (GRBs) are known to be highly collimated events, and are mostly detectable when they are seen on-axis or very nearly on-axis. However, GRBs can be seen from off-axis angles, and the recent detection of a short GRB associated to a gravitational wave event has conclusively shown such a scenario. The observer viewing angle plays an important role in the observable spectral shape and the energetic of such events. We present a numerical model which is based on the single-pulse approximation with emission from a top-hat jet and has been developed to investigate the effects of the observer viewing angle. We assume a conical jet parametrized by a radius Rjet, half-opening angle θjet, a comoving-frame emissivity law and an observer viewing angle θobs, and then study the effects for the conditions θobs < θjet and θobs > θjet. We present results considering a smoothly broken power-law emissivity law in jet comoving frame, albeit the model implementation easily allows to consider other emissivity laws. We find that the relation $E^{\rm i}_{\rm p}\propto E_{\rm iso}^{0.5}$ (Amati relation) is naturally obtained from pure relativistic kinematic when $\Gamma \gtrsim 10$ and θobs < θjet; on the contrary, when θobs > θjet it results $E^{\rm i}_{\rm p}\propto E_{\rm iso}^{0.25}$. Using data from literature for a class of well-know sub-energetic GRBs, we show that their position in the $E^{\rm i}_{\rm p}-E_{\rm iso}$ plane is consistent with event observed off-axis. The presented model is developed as a module to be integrated in spectral fitting software package XSPEC and can be used by the scientific community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.