Abstract
To understand the fundamental mechanisms of nitrogen dioxide (NO2) and nitrous oxide (N2O) formation in natural gas-diesel dual fuel combustion, a numerical study on NO2 and N2O formation in laminar counterflow methane (CH4)/n-heptane (n-C7H16) dual fuel flames is conducted. The results indicate that NO2 accounts for a small part of total NOx formation. The NO2 emission index first increases and then decreases with increasing CH4 addition and increases monotonically with increasing flame strain rate. The NO2 emission indices by different reactions are identified and analyzed. It is revealed that a small amount of CH4 addition increases the NO2 emission index because of increased HO2 generation while a larger amount of CH4 addition decreases the NO2 emission index due to the reduced NO production. Besides, it is concluded that decreasing flame temperature is beneficial to the formation of NO2, which explains the monotonic increase of NO2 emission index with increasing flame strain rate. Little N2O is formed in CH4/n-C7H16 dual fuel flames compared to NO and NO2. The N2O emission index decreases with increasing CH4 addition and flame strain rate. However, the relatively change of N2O emission index is quite small compared to that of NO2 emission index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.