Abstract

Radial Jet Reattachment combustion (RJRC) flame jet is used in applications where the impingement surface is delicate and demands low impingement pressure. In the present study, a two dimensional axisymmetric computational fluid dynamics (CFD) simulation is carried out. The turbulence–combustion interaction in the flame field is modeled in a k−ε/EDM framework. The distribution of heat flux, pressure coefficient and emissions is presented for varying Reynolds number (Re = 1000 to 30,000) and different non-dimensional nozzle tip to plate spacing (X/R = 0.5 to 3). It is found that the peak heat flux increases and pressure coefficient reduces significantly with the increase in Reynolds number. However, with the increase in the nozzle tip to plate spacing the peak heat flux and the pressure coefficient decrease. Furthermore, the concentrations of NOx and CO emissions increase with the increase in Reynolds number and the distance of the location of the nozzle tip from the impingement plate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call