Abstract

AbstractSeveral numerical simulations of the Arctic ice cover over a seasonal cycle are carried out. Two different types of constitutive laws are examined: rigid plastic and linear viscous. In both cases, the strength of the ice interaction is taken as a function of ice thickness and compactness. The thickness and compactness, in turn, evolve according to continuity equations which include thermodynamic source and sink terms. The simulations with the rigid-plastic law reproduce reasonable geographical ice-thickness variations, ice outflow, and ice-velocity characteristics. The viscous simulations (especially the Newtonian viscous case) produce less satisfactory geographical ice thickness variations, and near-shore velocity characteristics. In addition the Newtonian-viscous simulation produces highly unrealistic ice-edge effects in summer. The results are discussed in terms of the relative magnitudes of the shear and compressive strengths, and in terms of the non-linear versus linear dependence on deformation in the ice rheology. The portion of this study employing a plastic constitutive law is published in full in Journal of Physical Oceanography, Vol. 9, No. 4, 1979, p. 815–46.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.