Abstract

A series of transient non-linear dynamic finite-element method (FEM) analyses pertaining to the interaction of a single-ply plain-woven balanced square textile-fabric armour with a spherical steel projectile is carried out in order to compare the corresponding results obtained for two different yarn models: (a) a solid FEM model in which the warp and weft yarns are represented using first-order three-dimensional solid elements and (b) a membrane model in which the same yarns are represented using second-order membrane elements. The analyses are carried out under different yarn—yarn and projectile—fabric frictional conditions and under different far-field boundary conditions applied to the edges of the fabric. The results obtained showed that the two sets of analyses yield comparable predictions regarding the temporal evolution and the spatial distribution of the deformation and damage fields within the fabric, regarding the ability of the fabric to absorb the projectile's kinetic energy and regarding the relative contributions of the main energy absorbing mechanisms. The work also confirmed the roles yarn—yarn and projectile—fabric friction play in the impact process as well as the effect of the far-field boundary conditions applied to the edges of the fabric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.