Abstract

This paper reports the results of an investigation conducted to assess the effectiveness of using glass fiber reinforced polymer (GFRP) plates to enhance the overstrength and ductility factors of moment resisting steel frames. The GFRP plates are bonded to the flanges of steel beams of the frame with an aim to enhance their local buckling capacities and consequently their ductility. The flexural behaviour of GFRP retrofitted beams is first determined using a nonlinear finite element model developed in-house. In this numerical model, consistent shell elements are used to simulate the flanges and web of the steel beam as well as the GFRP plate. The interface between the steel and the GFRP plate is simulated using a set of continuous linear spring system representing both the shear and peeling stiffness of the adhesive based on values obtained from a previous experimental study. The moment–rotation characteristics of the retrofitted beams are then implemented into the frame model to carry out nonlinear static (pushover) analyses. The seismic performance level of the retrofitted frames in terms of overstrength and ductility factors is then compared with that of the bare frame. The results show a significant enhancement in strength and ductility capacities of the retrofitted frames, especially when the beams of the frame are slender.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.