Abstract

In this work, magneto-hydrodynamic natural convection of a nanofluid in a wavy cavity considering Brownian motion is studied numerically using the control volume finite element method. The effective viscosity and thermal conductivity of the nanofluid are defined by the correlation in which the impact of Brownian motion on the thermal conductivity is considered. The considered wavy cavity is heated from the left side and it cooled from the right side. Also, the top and bottom walls of the considered wavy cavity are assumed adiabatic. The impacts of various controlling parameters such as the Rayleigh number, wavy contraction ratio, Hartmann number and undulation number are examined on the contour maps of the streamlines and the isotherms. Further, the average and local Nusselt numbers are calculated and presented graphically and discussed. The findings narrate that the strength of the convective flow has a direct relationship with the Rayleigh number and also it has a reverse relationship with the wavy contraction ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.