Abstract
Abstract In this paper, a three-dimensional (3D) hydrogen desorption model is applied to the thin double layered annulus ZrCo based hydrogen storage bed to precisely study the hydrogen desorption reaction and resultant heat and mass transport phenomena inside the bed. The 3D hydrogen desorption simulations are carried out and calculated results are compared with the experimental data measured by Kang et al. [1] . The present model reasonably captures the bed temperature evolution behavior and the hydrogen discharging time for 90% desorption. In addition, the thin double layered annulus metal hydride bed (MHB) design is numerically evaluated by comparing with a simple cylindrical MHB. More uniform distributions in the bed temperature and H/M atomic ratio and resultant superior hydrogen desorption performance are achieved with the thin double layered annulus bed owing to its high external surface to volume ratio and thus more efficient heating. This numerical study indicates that efficient design of the metal hydride bed is key to achieve rapid hydrogen discharging performance and the present 3D hydrogen desorption model is a useful tool for the optimization of bed design and operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.