Abstract

Large-eddy simulations for the case of an axisymmetric body of revolution with appendages are considered. The geometry is the benchmark case of the DARPA suboff body. The paper focuses on the effects of the Reynolds number on the structure of the boundary layer in the stern area as well as the near wake. For this purpose we compare results for two Reynolds numbers (based on the length of the body, , and the free-stream velocity, ): and . Results are in good agreement with published experiments at the same Reynolds numbers. The boundary layer thickness over the stern increases substantially at both simulated Reynolds numbers, due to the adverse pressure gradient at the rear of the body. However, for the high Reynolds number case, a weaker peak of turbulent kinetic energy develops in the outer layer over the stern. Nonetheless, the associated bimodal distribution of the turbulent stresses in the wake is already very similar a few diameters downstream of the tail. First- and second-order moments demonstrate that junction vortices at the stern bring higher velocities and turbulence at the root of the appendages for both Reynolds numbers, with a more evident signature at . An azimuthal readjustment of turbulent kinetic energy occurs in the wake, becoming more axisymmetric, with increasing values in the planes aligned with the stern appendages, due to turbulence coming from both the stern boundary layer and junction vortices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.