Abstract

Fire remains a serious threat to a floating liquefied natural gas facility. It is of greater concern given the remote locations and limited accessibility of emergency services. This study aims to present a rigorous procedure to study potential accident scenarios in an offshore (floating processing) facility with different ignition source locations and verify the effectiveness of safety measures using computational fluid dynamics code. The uniqueness of the present study is the integration of release, dispersion and fire modeling scenarios, simplifying the fire analysis and increasing its effectiveness from the offshore process system design and analysis perspectives. The first step of the procedure is to identify the range of potential release scenarios and their strength of dispersion in confined and semi-confined spaces. Subsequently, potential fire scenarios are analyzed considering the influence of the location. Computational fluid dynamics models are used to analyze these three steps of the scenarios. Application of the procedure is demonstrated on an offshore facility by analyzing 14 credible scenarios. The ranges of safety measures of these fires are also studied to determine their effectiveness to prevent fires and mitigate their impact. This study provides a simple and efficient way to analyze the impact of key design parameters. In this study, the transition from fire to explosion is not considered and all the environmental factors are assumed to be constants in the simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.