Abstract
Abstract The work introduces a numerical external damage prediction method for buried pipelines. The external pitting initiation and corrosion rate of oil or gas pipelines are affected by pipeline age, physicochemical properties of soils and cathodic protection performance as well as coating conditions. Before developing the damage prediction model, the influencing factors were weighed by grey relational analysis, and then the relationship among the pitting depth and the influencing factors of external corrosion was established for corrosion damage prediction through artificial neural network (ANN). Subsequently, the established ANN was applied to predict corrosion damage and corrosion rate for some selected cases, and the neural network prediction model was analyzed and compared to another corrosion rate prediction models. Through the analysis and comparison, a few opinions were proposed on the external corrosion damage prediction and pipeline integrity management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.