Abstract

Yangtze finless porpoises (Neophocaena asiaeorientalis) are known to use the narrowband signals for echolocation. In this study, a finite-element model was configured based on computed tomography imaging technique and tissue physical properties measurement to simulate biosonar signal emission and transmission processes through animal’s head. The roles of the main structures in the head such as the air sacs, melon, bony structures, connective tissue, blubber, mandibular fat on the biosonar beam formation were investigated, and the relative importance of these structures was compared. The biosonar beam properties of this neonate porpoise were compared with those of adult ones. The method in this paper suggested an effective way for investigating the acoustic processes in the heads of the neonate odontocetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.