Abstract

A numerical study was performed to evaluate the effectiveness of the novel sister hole film cooling technique. Two secondary coolant holes bound the primary coolant hole slightly downstream of its midpoint, intended to minimize the primary vortex pair and improve cooling performance. An unstructured hexahedral mesh was generated and the realizable k–e turbulence model with near-wall modeling was used in these simulations. Blowing ratios of 0.2, 0.5, 1.0, and 1.5 were simulated to evaluate the applicability of sister holes in practical applications. It was found that sister holes significantly improved cooling performance over the entire computational domain, particularly at high blowing ratios. These results arose by countering the primary vortex pair with a secondary pair from these sister holes, ultimately maintaining flow adhesion where the coolant stream would have otherwise separated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.