Abstract

Friction plays a key role in the efficiency and stability of the slip-controlled torque converter clutches. The effects of friction on the dynamics and stability of a slip-controlled torque converter clutch system using a bifurcation-analysis-based approach is presented in this paper. A three degree-of-freedom nonlinear driveline model with integral feedback action to control the clutch slip speed has been utilized for this study. The clutch interface friction is dependent on the slip speed and is a function of the static friction constant, μ0, the low velocity friction constant μ1, and the low velocity exponential rate, γ. Using one-parameter numerical continuation, local Hopf bifurcations of the subcritical type are observed as the friction parameters μ1 and γ were varied at low slip speeds. The continuation results are verified using simulations of the full nonlinear model. Stick-slip and undesirable oscillations of the model inertia elements are observed for certain parameter values. As the slip speed is increased, the bifurcation instability occurs at an increasingly higher value of μ1 signifying an improved tolerance of negative friction gradient at higher slip speeds. Smaller exponential rates γ are tolerated at higher slip speeds before the bifurcation instability occurs. For the range of parameter values considered, no bifurcations occur for a slip speeds higher than 3.4 and 4.5 rad/s with μ1 and γ as the continuation parameters, respectively. These values of slip speeds are much lower than the system’s first mode of torsional vibration of 16 Hz (≈100 rad/s).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.