Abstract

Recently, phase-field approaches have gained popularity as a versatile tool for simulating fracture in a smeared manner. In this paper we give a numerical assessment of two types of phase-field models. For the case of brittle fracture we focus on the question whether the functional that describes the smeared crack surface approaches the functional for the discrete crack in the limiting case that the internal length scale parameter vanishes. By a one-dimensional example we will show that Γ-convergence is not necessarily attained numerically. Next, we turn attention to cohesive fracture. The necessity to have the crack opening explicitly available as input for the cohesive traction-relative displacement relation requires the independent interpolation of this quantity. The resulting three-field problem can be solved accurately on structured meshes when using a balanced interpolation of the field variables: displacements, phase field, and crack opening. A simple patch test shows that this observation does not necessarily extend to unstructured meshes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.