Abstract

The target of this study is to investigate the effect of time lags on the thermal response of the biological tissue during laser irradiation to the tumoral tissue. The classical Fourier, the single phase lag (SPL) and the dual phase lag (DPL) models of bio-heat transfer are implemented and compared. The numerical solution based on the finite volume method (FVM) is applied to solve the bio-heat transfer equations. Beer-Lambert’s law is applied to determine the heat source distribution caused by the laser irradiation. The thermal damage caused by the laser exposure for the three models is discussed. Results show that the DPL model predicts a significantly different thermal damage from the classical Fourier and the SPL models. It is observed that the DPL model predicts the maximum temperature 4.1°C and 5.7°C less than the Fourier and the SPL models, respectively. The deviation between the maximum temperatures obtained by the three models can be attributed to the finite speed of thermal wave propagation in the non-Fourier models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.