Abstract

Orbital debris in space offers a constant threat to spacecraft, satellites, and the International Space Station (ISS). There is a growing concern as the number of satellites and other space objects keep increasing year-on-year with advancements in space exploration and orbital activities. The threat posed by the small debris or MMODs (micrometeoroid orbital debris) to satellites and spacecraft can be prevented using Whipple shields made of impact-resistant materials. In the current work, a numerical approach has been utilized to simulate hypervelocity impact of spherical projectiles of diameter 4 mm on monolithic and coated whipple shields to determine the extent of damage, and the deformation behaviour. The simulations were conducted at 3.5 km/s and 5.5 km/s. The computational work was carried out using AUTODYN® module of ANSYS® finite element software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.