Abstract

The goal of the present study was to investigate the low-speed impact behavior and damage patterns of carbonfiber-reinforced methyl methacrylate composites. The process of low-speed impact damage in the composites was simulated using the finite-element method and verified experimentally. Orthotropic plane stress conditions of a homogenized lamina were used to model the composite structures. The evolution of damage was simulated, using the LS-DYNA finite-element code, by material models MAT58 based on the Matzenmiller damage mechanics model with four Hashin failure criteria and MAT54 based on four Chang-Chang failure criteria. The damage variables were determined calibrating the numerical model according to the experimental data of three-pointbending and impact tests. Detailed quantitative comparisons were carried out between the delaminated areas simulated by the model and those characterized experimentally by the ultrasonic C-Scan method. Results of the numerical analyses demonstrated their good agreement with experimental data in terms of contact force histories, peak forces, absorbed energy, and projected damage area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call