Abstract
A one-dimensional unsteady-state heat transfer model coupled with time dependent mass loss equation of wood particles exposed to drying and pyrolysis conditions was developed. The kinetic parameters were determined experimentally and the regime and characteristics of the conversion were evaluated in terms of the particle size and reactor temperature. The order of mass loss exponent varied from n=1 at temperatures lower than 350°C to n=0.5 at temperatures higher that 350°C. The analysis of conversion time, the time when particles lost 90% of their mass, showed that thermal treatment of particles larger than 0.5mm were controlled by internal thermal resistances. The valid range of particle size to use the simplified lumped model depends on the fluid temperature around the particles. The critical particle size was 0.6–0.7mm for the fluid temperature of 500°C and 0.9–1.0mm for the fluid temperature of 100°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.