Abstract
The thermal and hydraulic performances of an air-cooled, planar, oblique-finned heat sink (OF HS) were investigated for two oblique angles: 30° and 45°. The conjugate heat transfer between the heat sink and the air flow were computed numerically in ANSYS Fluent for a range of air flow rates for the smallest periodically repeating portion of the heat sink. The RNG k-ε turbulence model with enhanced wall treatment was used to solve the fluid flow and heat transfer. Followed by the experimental validation, the numerical results were scrutinized further to understand the effects of the flow field on the measured heat transfer performances. Apart from boundary layer disruption, vortices generated within the secondary channels due to flow separation particularly improved the advection component of the convective heat transfer, resulting in a heat transfer enhancement, exceeding the pressure drop penalty. The strong flow mixing, showing chaotic behavior, enabled a more uniform increase in the air temperature in the streamwise direction, utilizing the cooling potential of the air flow more effectively. 30° oblique-finned heat sink was observed to induce higher rates of secondary flow rates and improve the heat transfer performance more than its 45° counterpart. Due to the migration of the flow in the direction of the secondary channels, the heat transfer enhancement was compromised at high Reynolds numbers, the pressure drop penalty exceeded the heat transfer enhancement, causing a reduction in the thermal-hydraulic performance factor. The effects of flow migration on the flow and temperature fields were investigated with full domain numerical simulations. Experimental investigations showed significant improvements in the junction temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.