Abstract

This paper describes a numerical and experimental analysis of the process of water vapour absorption by a static lithium bromide solution. In the experiment, the temperature evolution of the absorbent solution is measured at different heights. The numerical model solves the set of governing equations for the simultaneous heat and mass transfer inside the absorbent by means of the finite-volume method. An iterative method is used to take into account the strong coupling of heat and mass transfer at the interface and variations of thermophysical properties. A moving grid technique is employed to represent the increase of the solution volume. Model results are compared with our measurements and data reported in the literature. The influence of using constant properties is analysed by comparison with the variable properties and experimental results. It is found that this assumption provides acceptable results in the investigated pool absorption cases despite a strong underestimation of the increase of the solution volume in the course of the absorption process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.