Abstract

The behavior of graphite dust is important to the safety analysis of High-Temperature Gas-cooled Reactor (HTGR). The fission products released by fuel elements would enter the primary loop and combine with dust, resulting in that the dust has a high load capacity of cesium, strontium, iodine and tritium. It would bring difficulty and inconvenience to the maintenance and repair of steam generator. Therefore, the behavior of graphite dust in the steam generator is essential to the safety of High Temperature Gas-cooled Reactors. The present study focused on the deposition and resuspension of graphite dust in steam generator of HTR by numerical method. The results show that the graphite dust in steam generator deposits on the surface of heat transfer tube through turbulent deposition, thermophoretic deposition, and other depositional mechanisms, of which thermophoretic deposition is the main mechanism for the particles with the diameter of 2.2μm in the present study. The preliminary calculation result shows that about 6760mg/m2 of graphite dust tends to load on the tube surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.