Abstract

Recently, interest has shifted towards developing multijunction or tandem solar cells due to their high potential to generate higher efficiency than traditional single-junction solar cells. Cadmium telluride (CdTe) and silicon (Si) solar cell materials have demonstrated significant potential in photovoltaic energy generation as tandem structures if fully developed. One approach for optimising CdTe/Si is to develop an effective tunnel junction that can electrically and optically interconnect the cadmium telluride and silicon cells with minimal loss. The wxAMPS 3.0 numerical simulation was used in this work to develop CdTe/Si tandem using zinc telluride/aluminium doped zinc oxide (ZnTe/AZO) as a tunnel junction (TJ). The result obtained shows an optimum efficiency of over 36 % with Voc = 1.945 V, Jsc = 21.519 mA/cm2, and FF = 86.823 % utilising the optimal 200 nm CdTe and Si absorber thickness of 300 μm. An analysis of the demonstrated results suggests that ZnTe/AZO tunnel junction will significantly contribute to the realisation of the CdTe/Si tandem solar cell. Hence, upon inserting a 40 nm highly doped ZnTe/AZO tunnelling junction to a CdTe/Si tandem configuration, the solar cell’s performance was enhanced by 48.190%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.