Abstract

Dry powder coating is a preferable surface modification technique over the traditional aqueous coating technique due to reduced energy waste and less environmental impact. Despite the benefits of dry powder coating, excessive amount of coating powder energy input is often applied to ensure sufficient coating is achieved. In this study, the Discrete Element Method (DEM) is utilised to assess the influence of material properties on dry coating efficiency in a blade-driven system. Granular Bond number is used to predict coating performance based on multiple simulations with varied material properties. This provides insight on the optimal range of material properties (size ratio, density ratio and surface energy) to achieve uniformly distributed coatings, thus providing precise control of the quantity of coating material required and minimising energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call