Abstract
The purpose of the present study is to investigate the characteristics of interfacial waves on flooding phenomena in an inclined pipe. The effects of liquid velocity and contact angle on the waves at the onset of flooding are studied with a two-dimensional computational fluid dynamic model. Flooding in a 30° inclined pipe is observed by using the Volume of Fluid (VOF) method. It is found when the contact angle is equal to 120°, the pipe wall cannot form a uniform liquid film and the gas velocity required on the onset of flooding decreases as the contact angle and liquid velocity increase. For a detailed understanding of the effects of contact angle and liquid velocity, an analytical forces model is proposed on the flooding waves, including gravity Fgw, the pressure of the gas core Fpc, pressure variations in the liquid film Fpl, wall shear force Fws, interfacial shear force Fss and surface tension force Fσ. Through the quantitative calculation of all forces, it is found that the amplitude and length of the flooding wave increase with liquid velocity. As the contact angle increases, the crests become sharper. Further, through analyzing the histogram distribution of the forces, the increase of the contact angle will change the mechanism of flooding from carrying droplets to rising waves. It provides a theoretical basis for the development of mechanistic models to predict the onset of flooding in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.