Abstract

In this study, the failure of the ductile layers from collinear, multiple and delaminating cracks that occur in laminated composite systems was studied using a constitutive relationship that accounts for strength degradation resulting from the nucleation and growth of voids. The results indicate that, in laminated composites, void nucleation and growth ahead of the cracks occur at a much faster rate because of evolution of much higher stress values in the interface region. Except for short crack extensions, collinear and multiple cracks develop crack resistance curves similar to that seen for a crack in the ductile layer material as a homogenous isotropic cases. For delaminating crack cases, the fracture behaviour is strongly influenced by the delamination length. The resistance of the ductile layers to crack extension can be significantly reduced by short delamination lengths; however, for large delamination lengths the resistance to crack extension becomes greater than that seen for the ductile material. The results also show that, if the crack tip is at the interface, similar maximum stress values develop in the ductile layers as in the fracture test of the same ductile material, suggesting that ductile–brittle fracture transition behaviour of the ductile layers is dependent upon the extent of the cracks in the brittle layers and fracture characteristics of the brittle layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call