Abstract

By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation, and then using the fractional-compact Grunwald–Letnikov tempered difference operator to approximate the Riemann–Liouville tempered fractional partial derivative, the fractional central difference operator to discritize the space Riesz fractional partial derivative, and the classical central difference formula to discretize the advection term, a numerical algorithm is constructed for solving the Caputo tempered fractional advection-diffusion equation. The stability and the convergence analysis of the numerical method are given. Numerical experiments show that the numerical method is effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.