Abstract

We present a numerical algorithm for pricing derivatives on electricity prices. The algorithm is based on approximating the generator of the underlying price process on a lattice of prices, resulting in an approximation of the stochastic process by a continuous time Markov chain. We numerically study the rate of convergence of the algorithm for the case of the Merton jump-diffusion model and apply the algorithm to calculate prices and sensitivities of both European and Bermudan electricity derivatives when the underlying price follows a stochastic process which exhibits both fast mean-reversion and jumps of large magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.