Abstract

A semi-analytical time-integration procedure for the integration of discretized dynamic mechanical systems is presented. This method utilizes the advantages of the boundary element method (BEM), well known from quasi-static field problems. Motivated by these spatial formulations, the present dynamic method is based on influence functions in time, and gives exact solutions in the linear time-invariant case. Similar to domain-type BEM’s for nonlinear field problems, the method is extended for different nonlinear dynamic systems having nonclassical damping and time-varying mass. The numerical stability and accuracy of the semi-analytical method is discussed in two steps for the nonclassical damping and for the nonlinear restoring forces, e.g. of the Duffing type. The damped Duffing oscillator and a linear oscillator with time-varying mass are used as representative model problems. For a nonlinear rotordynamic system, a comparison is given to other conventionally used time integration procedures, which shows the efficiency of the present method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call