Abstract
The use of supercritical fluids in technical applications requires an accurate knowledge of their critical points. For mixtures, these can deviate significantly and without a linear dependency from the critical points of its individual pure components. Since even small amounts of admixture can have noticeable effects, this not only concerns blends of targeted compositions, but also unintentional mixtures for example caused by impurities. Within this work, a method for the calculation of critical points is presented which focuses on numerical robustness promoting a fast and reliable generation of results. Implemented into the thermodynamic property software TREND, with its mixture modeling capabilities, the method allows a flexible combination of different equations of state and mixture models which also includes predictive approaches. Against the background of an increasing relevance of mixtures based on supercritical CO_2 (sCO_2) for energy applications, critical lines are calculated and compared against experimental results for selected sCO_2-based mixtures recently considered for power plant applications. Herein, several combinations of equations of state (EoS) and mixture models are compared. Critical lines are calculated for the first time in this work with the combination of the multi-fluid mixture model with excess Gibbs energy (g^text {E}) models. It was found that the critical lines calculated with the combination of the multi-fluid mixture model with the g^text {E}-model COSMO-SAC yields good predictive results for the investigated CO_2 mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.