Abstract

Owing to its high toxicity, the chemistry of element number four, beryllium, is poorly understood. However, as the lightest elements provide the basis for fundamental models of chemical bonding, there is a need for greater insight into the properties of beryllium. In this context, the chemistry of the homo-elemental Be-Be bond is of fundamental interest. Here the ligand metathesis chemistry of diberyllocene (1; CpBeBeCp)-a stable complex with a Be-Be bond-has been investigated. These studies yield two complexes with Be-Be bonds: Cp*BeBeCp (2) and [K{(HCDippN)2BO}2]BeBeCp (3; Dipp = 2,6-diisopropylphenyl). Quantum chemical calculations indicate that the Be-Be bond in 3 is polarized to such an extent that the complex could be formulated as a mixed-oxidation state Be0/BeII complex. Correspondingly, it is demonstrated that 3 can transfer the 'beryllyl' anion, [BeCp]-, to an organic substrate, by analogy with the reactivity of sp2-sp3 diboranes. Indeed, this work reveals striking similarities between the homo-elemental bonding linkages of beryllium and boron, despite the respective metallic and non-metallic natures of these elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call