Abstract
An electrochemical nucleic acid biosensor based on label-free DNA detection method was prepared for the first time by using electropolymerized poly(L-glutamic acid)-modified pencil graphite electrode (PGA/PGE) for detection of hepatitis C virus genotype 1a (HCV1a). Inosine-substituted 20-mer probes related to the HCV1a were immobilized onto PGA/PGE surface by covalent linking with the formation of amide bonds. Square wave voltammetry (SWV) was used to monitor the oxidation signal of guanine in the hybridization events, which gave an oxidation peak at +1.05 V. An increase in the oxidation signal of guanine was showed by hybridization of the probe with the complementary DNA. Noncomplementary oligonucleotides were also used to investigate the selectivity of the biosensor. The proposed nucleic acid biosensor was linear in the range of 50 nM to 1.0 μM, exhibiting a limit of detection of 40.6 nM. Finally, single-stranded synthetic PCR product analogues of HCV1a were performed in optimal condition. This PGA-modified nucleic acid sensor is cost-effective and disposable, and besides, it has superior electrocatalytic effect on the oxidation of guanine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.