Abstract

The epidermal growth factor (EGF) receptor (EGFR) promoter is negatively regulated by thyroid hormone and retinoic acid. This regulation can be mapped to a 36-basepair GC-rich region of the promoter (EGFR P/E) that functions autonomously as a promoter and an enhancer when placed in front of the thymidine kinase gene TATA element. Direct high affinity binding of the thyroid hormone receptor (T3R) to this element requires a nuclear protein. Through ion exchange chromatography and gel filtration of HeLa nuclear extract, this activity was identified as a protein of approximately 67 kilodaltons. This protein did not bind to DNA alone, but greatly augmented T3R binding to the EGFR P/E sequence in gel mobility shift and DNA precipitation assays. When combined with the T3R auxillary protein (TRAP), the T3R migrated as a larger complex on the DNA. Chemical cross-linking identified this complex as a heterodimer between T3R and TRAP. T3R-TRAP binds to a 7-basepair site in the EGFR P/E (GGGACTC) that has weak homology to a consensus thyroid response element half-site. Thus, on this element, T3R-TRAP heterodimers contact the DNA primarily on a single site that comprises an inhibitory thyroid response element.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.