Abstract

Proton second moments and spin-lattice relaxation times in the laboratory and rotating frames and 31P and 23Na spin-lattice relaxation times in the laboratory frame have been measured over the temperature region 295 > T > 100 K for the sodium pyrophosphate salts, Na2P2O7∙10H2O and Na2H2P2O7. Laboratory-frame 31P and 23Na spin-lattice relaxation times have also been measured over the same temperature range for Na4P2O7. In the case of Na4P2O7∙10H2O, the results show clearly that the H2O molecules execute a twofold jump motion at higher temperatures. The potential barriers to these motions range from 30 to 40 kJ/mol. The 31P and 23Na relaxations are also influenced by these motions. The [Formula: see text] ion in Na2H2P2O7 is stationary over the temperature range studied. T1(Na) is most probably dominated by acoustical lattice vibrations. The [Formula: see text] ion in Na4P2O7 is not involved in a molecular reorientation. A shallow T1(P) minimum of 55 s is associated with a limited motion of the pyrophosphate molecule.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call