Abstract

Soybean is sensitive to drought stress, and increasing tolerance to drought stresses is an important target for improving the performance of soybean in the field. The genetic mechanisms underlying soybean’s drought tolerance remain largely unknown. Via a genome-wide association study (GWAS) combined with linkage analysis, we identified 11 single-nucleotide polymorphisms (SNPs) and 22 quantitative trait locus (QTLs) that are significantly associated with soybean drought tolerance. One of these loci, namely qGI10-1, was co-located by GWAS and linkage mapping. The two intervals of qGI10-1 were differentiated between wild and cultivated soybean. A nuclear factor Y transcription factor, GmNFYB17, was located in one of the differentiated regions of qGI10-1 and thus selected as a candidate gene for further analyses. The analysis of 29 homologous genes of GmNFYB17 in soybean showed that most of the genes from this family were involved in drought stress. The over-expression of GmNFYB17 in soybean enhanced drought resistance and yield accumulation. The transgenic plants grew better than control under limited water conditions and showed a lower degree of leaf damage and MDA content but higher RWC, SOD activity and proline content compared with control. Moreover, the transgenic plants showed a fast-growing root system, especially regarding a higher root–top ratio and more branching roots and lateral roots. The better agronomic traits of yield were also found in GmNFYB17 transgenic plants. Thus, the GmNFYB17 gene was proven to positively regulate drought stress resistance and modulate root growth in soybean. These results provide important insights into the molecular mechanisms underlying drought tolerance in soybean.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.