Abstract
In many real-world manufacturing applications, a number of parallel flowshops are often used to process the jobs. The scheduling problem in this parallel flowshop system has gained an increasing concern from the operational research community; however, multiple scheduling criteria are rarely considered simultaneously in the literature. In this paper, a special parallel flowshop scheduling (PFSS) problem that consists of two parallel non-identical shops, one with two consecutive machines and the other with only one machine, is investigated with two objective functions of minimizing the total flow time of jobs and the number of tardy jobs in the two-machine flowshop. A multiobjective evolutionary algorithm (MOEA) based memetic algorithm hybridizing the local search technique into the framework of NSGA-II, which is well known as the most popular MOEA, is proposed for addressing the investigated PFSS problem. A set of test instances are employed to examine the performance of the proposed algorithm in comparison with two peer MOEAs, which also adopt the similar algorithm mechanism of NSGA-II. Experimental results indicate the effectiveness and efficiency of the proposed NSGA-II based memetic algorithm in solving the multiobjective PFSS problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.