Abstract

NRF2 (nuclear factor erythroid 2-related factor 2) is a master regulator of protective responses in healthy tissues. However, when it is active in tumor cells, it can result in drug resistance. KEAP1, the endogenous NRF2 inhibitor, binds NRF2 and redirects it to proteasomal degradation, so the KEAP1/NRF2 interaction is critical for maintaining NRF2 at a basal level. A number of clinically relevant KEAP1 mutations were shown to disrupt this critical KEAP1/NRF2 interaction, leading to elevated NRF2 levels and drug resistance. Here, we describe a small-molecule NRF2 inhibitor, R16, that selectively binds KEAP1 mutants and restores their NRF2-inhibitory function by repairing the disrupted KEAP1/NRF2 interactions. R16 substantially sensitizes KEAP1-mutated tumor cells to cisplatin and gefitinib, but does not do so for wild-type KEAP1 cells, and sensitizes KEAP1 G333C-mutated xenograft to cisplatin. We developed a BRET2-based biosensor system to detect the KEAP1/NRF2 interaction and classify KEAP1 mutations. This strategy would identify drug-resistant KEAP1 somatic mutations in clinical molecular profiling of tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call