Abstract

This paper presents a novel ZVZCS full-bridge DC/DC converter, which is able to process and deliver power efficiently over very wide load variations. The proposed DC/DC converter is part of a plug-in AC/DC converter used to charge the traction battery (high voltage battery) in an electric vehicle. The key challenge in this application is operation of the full-bridge converter from absolutely no-load to full-load conditions. In order to confirm reliable operation of the full-bridge converter under such wide load variations, the converter should not only operate with soft-switching from full load to no-load condition with satisfactory efficiency for the full range of operation, but also the voltage across the output diode bridge needs to be clamped to avoid any adverse voltage overshoots arising during turn-OFF of the output diodes as commonly found in regular full bridge converters. In order to achieve such stringent requirements and high reliability, the converter employs a symmetric passive near lossless auxiliary circuit to provide the reactive current for the full-bridge semiconductor switches, which guarantees zero voltage switching at turn-ON times for all load conditions. Moreover the proposed topology is based on a current driven rectifier in order to clamp the voltage of the output diode bridge and also satisfy ZVZCS operation of the converter resulting in superior efficiency for all load conditions. In this paper operation of the converter is presented in detail followed by analytical design procedure. Experimental results provided from a 3KW prototype validate the feasibility and superior performance of the proposed converter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call