Abstract
A novel high-efficiency (Zr–Ce) incorporated Ca(OH)2 nanostructure adsorbent for CO2 capture was synthesized using calcium acetate monohydrate precursor containing n-hexadecyltrimethyl ammonium bromide and sodium hydroxide via a precipitation method. The cyclic carbonation/calcination performance of the novel adsorbent was investigated using a thermogravimetry-differential thermal analysis (TG-DTA) apparatus. The novel (Zr–Ce) incorporated Ca(OH)2 adsorbent exhibited a significantly improved CO2 adsorption capacity, cyclic stability and remarkable carbonation conversion up to ~96% for 14 carbonation/calcination cycles compared with the pure Ca(OH)2 adsorbent. This result may be due to the large Brunauer–Emmett–Teller (BET) surface area (80.23m2/g), the wide range of mesopore size distribution (2–30nm) and the presence of the high temperature sintering resistance Ce2Zr3O10 compound of the novel adsorbent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.