Abstract
The development of triboelectric nanogenerators (TENGs) based on inexpensive inorganic materials has attracted significant attention to envisage next-generation self-powered electronic devices and sensors. In this research work, the fabrication of a triboelectric nanogenerator (TENG) based on ZnS nanosheets arrays was investigated for the first time. This TENG was fabricated with ZnS nanosheets films, polydimethylsiloxane (PDMS) as active tribo-layers. The originality of this work lies in the choice of materials; pure ZnS nanosheets and PDMS-Al cover foils. By hand excitation force, the developed TENG (5 ×5 cm2) produced an output voltage and a short-circuit current of ~8 V and ~7.12 µA respectively. In addition, the present TENG with pure ZnS nanosheets on Al substrate produced an output voltage almost twice than TENG that involved only Al substrate. In this current study, introducing ZnS nanosheets on Al substrate increased the surface area and roughness, resulting in improved performance. The study of TENG parameters confirms that the TENG (10 ×10 cm2) with 2 cm spacing between tribo layers, applied force frequency of ~ 4–5 Hz were optimum to obtain the maximum output voltage of ~33 V. The high stability of TENG was confirmed by testing TENG response over 1000 cycles. Further, TENG was used to power portable electronic devices such as a digital watch, thermometer, calculator, and 64 LEDs when coupled to a capacitor. Finally, TENG was demonstrated for sensing force and pressure, TENG output response was used as a clock pulse for the digital circuits. The proposed TENG is easy to handle, simple and economical, and ZnS-based TENG's performance can be improved using other tribo-materials instead of PDMS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.