Abstract

In this paper, a novel ZnO-based graphite-insulator-semiconductor (GIS) diode was fabricated on graphite substrate by radio frequency (rf) magnetron sputtering. A SiO2 thin film was used as the insulator layer grown by electron beam evaporation technique. The measurement of current-voltage of the ZnO-based GIS diode showed a Schottky rectifying diode characteristic with a threshold voltage of 5.2 V and a poor leakage current of ~10-3 A under a reverse bias condition. An interesting negative capacitance phenomenon was also observed from the GIS diode. The successful fabrication of ZnO-based GIS diode on graphite substrate offers the significant opportunity to be readily transferred onto any rigid or flexible foreign substrates, since the graphite substrate consists of weakly bonded layer structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.