Abstract

Mitogen-activated protein kinases (MAPKs) are evolutionary conserved enzymes in cell signal transduction connecting cell-surface receptors to critical regulatory targets within cells and control cell survival, adaptation, and proliferation. Previous studies revealed that zinc finger proteins are involved in the regulation of the MAPK signaling pathways. Here we report the identification and characterization of a novel human zinc finger protein, ZNF436. The cDNA of ZNF436 is 3.8 kb, encoding 470 amino acids in the nucleus. The protein is highly conserved in evolution across different vertebrate species from rat to human. RT-PCR indicates that ZNF436 is expressed in all the human fetal tissues examined, with a high level in brain and heart. Overexpression of pCMV-tag2A-ZNF436 in the COS-7 cells represses the transcriptional activities of SRE and AP-1. These results suggest that ZNF436 is a member of the zinc finger transcription factor family and may act as a negative regulator in gene transcription mediated by the MAPK signaling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call