Abstract

A novel zero carbon emission combined power and hydrogen system is developed in this paper, which integrates power generation, hydrogen production, and energy storage. The novel combined system is composed of solar power tower subsystem, supercritical carbon dioxide recompression Brayton cycle subsystem, hydrogen gas turbine subsystem, hydrogen production subsystem and thermoelectric generator subsystem. Considering the solar instability, three operating modes are set for the combined system: pure hydrogen mode, solar‑hydrogen hybrid mode and pure solar energy mode. Comprehensive energy, exergy and economic analyses are performed for the combined system. The effects of five key parameters on the system performance are investigated. Taking the maximum exergy efficiency and the minimum levelized cost of energy as the objective function, the key parameters are optimized by the genetic algorithm. Results show that in pure hydrogen mode, the thermal and exergy efficiency of the combined system are 44.79% and 45.49%, respectively. Compared with pure hydrogen mode, the levelized cost of energy is reduced by 44.76% and 75.16% in solar‑hydrogen hybrid and pure solar energy mode. There is an optimal compressor pressure ratio to make the combined system have better thermodynamic and economic performance. Parameter optimization results show that for pure solar mode, the levelized cost of energy of the combined system is 75.4% and 56.3% lower than that of pure hydrogen mode, solar‑hydrogen hybrid mode respectively in the levelized cost of energy optimal design. The derived significant contributions of this work highlight strong potentials for combined system based on solar energy‑hydrogen complementary utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call